
56

Analysis of Real-Time Systems Timing Constrains
Sandra Đošić and Milun Jevtić

Abstract - In this paper we analyze timing constrains of one
fault tolerant hard real-time system with time redundancy. Our
goal is to analyze possibility for overcoming transient faults,
which are detected during tasks executions, using technique of
executing task again or executing some alternative task. We
created and presented in the paper program for estimation of
possibility to overcome transient failure in one real-time system.
On the basis of timing characteristics of real-time tasks and the
value of redundant time we can find the value for minimum time
between two consecutive faults which real-time system can
tolerate.

Keywords - Real-time systems, Response time analysis, Fault
tolerance.

I. INTRODUCTION

A system is said to be real-time if the total correctness

of an operation depends not only upon its logical
correctness, but also upon the time in which it is
performed, [1].The classical conception is that in a hard
real-time system, the completion of an operation after its
deadline is considered useless - ultimately, this may cause a
critical failure of the complete system. A soft real-time
system on the other hand will tolerate such lateness, and
may respond with decreased service quality (e.g., omitting
frames while displaying a video).

One of the goals during real-time systems designing
process is to create predictable real-time systems. Analysis
of real-time systems timing constrains is fundamental for
design such systems. Designing predictable real-time
systems is easier with the assumption that there is no fault
during system execution. However, this fault-free
assumption is, in fact, not realistic because “non-faulty
systems hardly exist, there are only systems which may
have not yet failed”, [2]. So, if a fault occurs during real-
time tasks execution then it is necessary to overcome that
fault and satisfied all real-time tasks timing constraints.

Focus of our research is fault tolerant hard real-time
systems and in this paper we will analyze timing constrains
for such systems, [3]. We also wrote program for that
analyses. Input data for program are timing characteristics
of real-time tasks and the result is minimum time between
two consecutive faults which real-time system can tolerate.
Due to result of analysis we can conclude how much is one
real-time system fault tolerant.

II. SOFTWARE REALIZATION OF ALGORITHM FOR

ANALYSIS RTS TIMING CHARACTERISTICS

A. Response time analysis

One of the goals of our research is to the design

predictable hard real-time systems. Response time analysis is
one approach that has successfully been used to achieve this
goal. The basis of response time analysis is Eq. (1) and more
about that analysis can be found in [3].

k
)i(hpeE

Ei

)i(hp

j
j

Ei
iEi Cmax

T

)T(R
C

T

)T(R
C)T(R

k
j

























  


 (1)

We use response time analysis for set Γ = {τ1, ... , τn} of n

real-time tasks, called primary tasks, that must be
scheduled by the system in the absence of faults. Any
primary task τi, in a set Γ, has a period Ti, a deadline Di (Di
≤ Ti), and a worst-case execution time, Ci. Each primary
task τi can have some alternative tasks

i associated with

it, [4]. Each alternative task represents some extra
processing that is necessary to recover a task from a given
faulty state caused by a fault. Any alternative task has a
worst-case execution time, called worst-case recovery time,

iC .

We also consider n different priority levels (1, 2, ... , n),
where 1 is the lowest priority level. We denote the priority
of primary task τi and alternative tasks

i as pi and
ip ,

respectively. We also assume in the analysis that there is a
minimum time between two consecutive fault occurrences,
TE.

The input parameters of this analysis are: the task
attributes (Ti, Di, Ci and

iC), the primary task priorities (pi)

and the assumed value of TE. The priorities of alternative
tasks are assumed to be the same as their primary tasks pi =

ip .

If there is no faults in the system then the worst-case
response time of task τi is the time necessary to execute τi
and all tasks τj such that pj > pi. When faults are considered
in the system, we have to include in the calculation of the
worst-case response time of τi the time necessary to recover
the faulty task. We use time redundancy for systems
recovering, [5].

Since Ri appears on both sides of the Eq. (1), the
solution can be obtained iteratively by forming a recurrence
relation with

ii CR 0 . This iterative procedure finishes

either when m
i

m
i RR 1 (the worst-case response time of τi

Sandra Đošić and Milun Jevtić are with the Department of
Electronics, Faculty of Electronic Engineering, University of Niš,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
(milun.jevtic, sandra.djosic)@elfak.ni.ac.rs.

Proceedings of Small Systems Simulation Symposium 2010, Niš, Serbia, 12-14 February 2010

57

is found) or when
i

m
i DR 1 (τi is considered

unschedulable).
Fig. 1 illustrates possible scenarios of real-time tasks

scheduling with different assumed value of TE.
The first scenario, Fig. 1(a) presents scheduling of two

periodic real-time tasks τ1 and τ2 when there is no fault in
the system. System of these two tasks are schedulable i.e.
both tasks execute before their deadlines, D1 and D2.

Fig. 1. Illustration of possible real-time tasks schedule when:
(a) there is no fault; (b) value for TE is long enough and real-time
system is fault tolerant; (c) value for TE is not long enough that

real-time system stays fault tolerant

Fig. 1(b) presents scheduling of the same real-time

tasks τ1 and τ2 when two faults occur in the system. Time
between two consecutive faults TE is long enough and real-
time system can tolerate these faults. First fault occurs just
a little bit before the end of tasks τ2 execution. Real-time
system overcomes this fault by executing task τ2 again or
executing alternative tasks with less or equal execution
time as task τ2. Second fault occurs again just a little bit
before the end of tasks τ2 execution. Time redundancy is
enough to tolerate this fault too. Like before, when the first
fault occurs, system overcomes fault by executing task τ2
again or executing some alternative tasks.

Fig. 1(c) presents scheduling of the same real-time tasks
τ1 and τ2 when two faults occur in the system. Now, time
between two consecutive faults TE is not long enough and
real-time system cannot tolerate these faults. First fault

occurs just a little bit before the end of tasks τ1 execution.
Real-time system can overcomes this fault by executing
task τ1 again or executing alternative tasks with less or
equal execution time as task τ1. In this case, second fault
occurs just a little bit before the end of tasks τ2 execution.
Now time redundancy is not enough to tolerate this fault.
Systems starts procedure for overcoming fault by executing
task τ2 again but timing characteristics if tasks τ2 cannot be
satisfied and τ2 missing its deadline. This is not acceptable
in one hard real-time system, so in this case real-time
system is not fault tolerant.

B. The Algorithm

Based on the Eq. (1) we realized algorithm for analysis
real-time systems timing constraints shown in Fig. 2. Input
data are number of real-time tasks n, task period Ti, worst-

case execution time Ci, worst-case recovery time iC , task

deadline di and task priority pi. For these parameters
algorithm have to check if the real-time system is fault
tolerant. We considered that fault can occur during tasks
execution and that is necessary to execute some recovery
tasks for faults overcome. The goal of algorithm is to find
minimum time between two consecutive faults which real-
time system can tolerate.

Fig. 2. Algorithm for analysis RTS timing constrains

Fig. 3 shows more detailed algorithm for analysis real-

time systems constrains. Input data for shown algorithm are
number of real-time tasks n, task period Ti, worst-case

START

STOP

number of real-time tasks n,
timing constrains
Ti, Ci, iC , di, pi

minimum time between
two faults TE

checking if the real-time system is
fault tolerant when the fault occur
and when is necessary to execute

alternative task

Proceedings of Small Systems Simulation Symposium 2010, Niš, Serbia, 12-14 February 2010

58

execution time Ci, worst-case recovery time iC , task

deadline di and task priority pi, step (1) on Fig. 3. In the
beginning we assume in the analysis that minimum time
between two consecutive fault occurrence is TE = 1 step (2)
on Fig. 3.

j
j

m
i

i
m
i c

T

R
cR 












 :1

nj ,1

ij pp 

0max c

nj ,1

ij pp 

cc j max

jcc :max

j
E

m
im

i
m
i c

T

R
RR max11 








 

m
i

m
ii

m
i RRdR   11 1 m

i
m
i RR 1 EE TT

END

ET

DA

NE

DA

NE

NE

NE

DA

1ET

iiiii pdCCTn ,,,,,

START

Fig. 3. More detailed algorithm for analysis RTS timing
constrains

In the first algorithm loop, step (3), step (4) and step (5)

on Fig. 3, we calculate the first and the second addend of

Eq. (1). In this loop only task with higher priority then
priority of task τi are important for us.

The second loop in algorithm, step (6) to (10) on Fig. 3,
describe process of finding maximum worst-case recovery
time from the tasks with equal or higher priority then
priority of task τi.

Step (11) on Fig. 3 calculates the worst-case response
time Ri for task τi. According to Eq. (1) this process is

iterative and it finishes either when i
m
i dR 1 (τi is

considered unschedulable) or when m
i

m
i RR 1 (the worst-

case response time of τi is found), step (12) on Fig. 3. If the
condition step (12) is true then we have output result TE
step (13) on Fig. 3. If the condition step (12) is false then
we must increase TE and continue iterative process until it
is necessary.

Using algorithm shown on Fig. 3 we wrote code and
generated .exe file “AlgFix.exe” which could be started
from command line with command:
ALGFIX [<input_file>] [<output_file>].
As you can see from the above command, optionally the
name of the input and output file could be written. If you
don’t write name for the input and output file then their
standard name “AlgFix Input.txt” and “AlgFix Output.txt”
are considered.

Input file is .txt format with parameters separate with
space. In the first line, the number of real-time tasks n
should be written. After that in the next n line we have to
specify timing characteristics of n real-time tasks: period
Ti, worst-case execution time Ci, worst-case recovery time

iC , deadline di and task priority pi.

Output file is also .txt format with parameters separate
with space. The first line is required result TE - minimum
time between two consecutive faults which real-time

system can tolerate. In the next n line are parameters m
iR

and 1m
iR for each of n real-tasks.

C. Results of Software Realization

In order to prove the correctness of the realized

algorithm and the whole program, we do a number of tests
and two of them are shown on Fig. 4.

Fig. 4(a) presents input and output file for case I of
three real-time tasks scheduling according with rate
monotonic algorithm, [6], [7].

Timing characteristics for these three tasks are shown in
Table I and inputs file “AlgFix Input” on Fig. 4(a). For
these parameters, we started our program for analyses.
Program considers that faults can occur in real-time system
during task execution and that system recovers executing
task again. Therefore, for this case worst-case recovery

time is equal as worst-case execution time, Ci = iC .

The output file “AlgFix Output.txt” shows results of
timing analyses. From that file, we can see that real-time
systems can tolerate minimum time between two

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Proceedings of Small Systems Simulation Symposium 2010, Niš, Serbia, 12-14 February 2010

59

consecutive fault occurrences of 11 time units. For TE = 11
parameters are R1(11) = 4, R2(11) = 8 and R3(11) = 22 and
this is also shown in output file. For all three tasks we got
that Ri(11) < di, for i = 1, 2 and 3, what means that all tasks
finished before their deadlines. It can be concluded that
system is schedulable.

(a)

(b)

Fig. 4. Input and output file of realized software for
(a) case I - system recovers executing task again

(b) case II - system recovers executing alternative task

For TE = 10 parameters are R1(10) = 4, R2(10) = 8 and

R3(10) = 32 and they are also shown in output file “AlgFix
Output.txt”. For task τ3 we got that R3(10) > d3 what means
that this task overflows its deadline, so the whole system is
not schedulable.

TABLE I

REAL-TIME TASKS TIMING CHARACTERISTICS - CASE I

Task
Task characteristics

Ti, Ci, iC , di, pi

τ1 13 2 2 13 3

τ2 25 3 3 25 2

τ3 30 5 5 30 1

Table II presents manually obtained results for the same

input parameters. If we compare the output file “AlgFix
Output.txt” and Table II, it can be conclude that we got the
same results, manually and software obtained.

TABLE II

RESULTS OF TIMING ANALYSES FOR CASE I

Task Ri(11) Ri(10)

τ1 4 4

τ2 8 8

τ3 22 32

The second case presents real-time system that recovers

from the fault executing some alternative tasks. Usually
those tasks have less worst-case execution time then

primary tasks, i.e. iC < Ci. This case is shown on Fig. 4(b).

Fig. 4(b) presents input and output file for case II of
three real-time tasks scheduling also according with rate

monotonic algorithm. Timing characteristics for these three
tasks are shown in Table III and inputs file “AlgFix Input”
on Fig. 4(b). For these parameters, we started our program
for analyses. Program considers that faults can occur in
real-time system during task execution and that system
recovers executing alternative tasks whose worst-case
recovery time is less then as worst-case execution time of

primary task, iC < Ci.

TABLE III

REAL-TIME TASKS TIMING CHARACTERISTICS – CASE II

Task
Task characteristics

Ti, Ci, iC , di, pi

τ1 13 2 1 13 3

τ2 25 3 2 25 2

τ3 30 5 3 30 1

The output file “AlgFix Output.txt” shows results of

timing analyses. From that file, we can see that real-time
systems can tolerate minimum time between two
consecutive fault occurrences of 6 time units. For TE = 6
parameters are R1(6) = 3, R2(6) = 9 and R3(6) = 24 and this
is also shown in output file. For all three tasks we got that
Ri(6) < di, for i = 1, 2 and 3, what means that all tasks
finished before their deadlines. It can be concluded that
system is schedulable.

For TE = 5 parameters are R1(5) = 3, R2(5) = 9 and R3(5)
= 35 and they are also shown in output file “AlgFix
Output.txt”. For task τ3 we got that R3(5) > d3 what means
that this task overflows its deadline, so the whole system is
not schedulable.

TABLE IV

RESULTS OF TIMING ANALYSES FOR CASE II

Task Ri(6) Ri(5)

τ1 3 3

τ2 9 9

τ3 24 35

Table IV presents manually obtained results for the

same input parameters. If we compare the output file
“AlgFix Output.txt” and Table IV, it can be conclude that
we got the same results, manually and software obtained.

III. CONCLUSION

In this paper, we presented program for analyzing

timing constraints of real-time tasks in one real-time
system. We considered that these tasks are schedule
according with rate monotonic algorithm and that faults can
occur during tasks execution. We also considered that real-
time system recovers from faults executing task again (case
I) or executing some alternative tasks (case II). In both

Proceedings of Small Systems Simulation Symposium 2010, Niš, Serbia, 12-14 February 2010

60

cases, we use time redundancy for systems recovery after
faults. For these two cases, we do a number of tests and
prove the correctness of the realized algorithm and the
whole program.

We specially presented two cases of tree real-time tasks
whose input parameters are almost the same, the only
difference is value for worst-case recovery time. Case I
presents real-time system who recovers from faults

executing task again, so Ci = iC . Case II presents real-time

system who recovers from faults executing some
alternative tasks whose worst-case recovery time are less

then tasks worst-case recovery time, i.e. iC < Ci. If we

compare output results for case I and case II we can
conclude that if worst-case recovery time is less than
minimum time between two consecutive fault occurrences
which systems can tolerate is also less. This reduction of
parameter TE indicates increasing real-time fault tolerance,
what is good.

Realized program offers the possibility to analyze
timing constraints of multiple real-time tasks very fast,
much faster than manually obtained. From the output
program result, we also got information about minimum
time between two consecutive fault occurrences that systems
can tolerate. This is important information from which we
can conclude how much is one real-time system fault

tolerant.

REFERENCES

[1] Nissanke, N.,“Realtime Systems”, Prentice Hall, 1997.
[2] Laprie, J.C., “Dependability: Basic Concepts and

Terminology”, Springer-Verlag, 1992.
[3] Lima, G., Burns, A., “An Optimal Fixed-Priority

Assignment Algorithm for Supporting Fault-Tolerant
Hard Real-Time Systems”, IEEE Transaction on
Computers, Vol. 52, No. 10, October, 2003, pp. 1332-
1346.

[4] Johnson, B., “Design Analysis of Fault-Tolerant Digital
Systems”, Addison-Wesley Publishing Company, 1988.

[5] Đošić, S., Jevtić, M., “Planiranje zadataka u sistemu za
rad u realnom vremenu sa redundansom u vremenu za
prevazilaženje otkaza”, Zbornik radova V simpozijuma
industrijske elektronike, INDEL 2004, Banja Luka,
novembar 2004, pp. 146-149.

[6] Cottet, F., Delacroix, J., Mammeri, Z., “Scheduling in
Real-Time Systems”, John Wiley & Sons, 2002.

[7] Juvva, K., “Real-Time Systems”, Carnegie Mellon
University, 18-849b Dependable Embedded Systems, or
http://www.ece.cmu.edu/~koopman/des_s99/real_time/i
ndex.html

